Discouragement Of Cycling, And Effects On Welfare

Written in 1994

1. Introduction

This paper examines the rationale for compulsory wearing of helmets as stated by the then Federal Minister for Land Transport: that head injury to cyclists will be reduced, resulting in savings to the community in health care and other costs – in effect, an increase in public welfare.

Laboratory tests have shown that a helmet has the potential to mitigate injury to the head, but this is limited to impacts at low speed. It is a long way from the controlled conditions of the laboratory to the variable behaviour of people in the circumstances of accidents. Consequently, evidence of the efficacy of helmets in reducing injury to cyclists in practice is conflicting. Further, compulsion has other effects with potential to add to the costs of public health care.

It is true that rates of death and serious injury to cyclists in road accidents in Australia have declined. From 98 in 1989, the last full year before helmets became compulsory for cyclists in Victoria, fatalities declined by 58 per cent to 41 in 1992. There were 43 fatalities in the year ended October 1993. Data showing declines in serious injuries in New South Wales, Victoria and Western Australia are discussed below. The declines can be largely explained by factors other than the compulsory helmet laws. Improvements in roads and motorists’ behaviour have reduced rates of death and injury of all road users. More importantly, many people have responded to the compulsory helmet laws by giving up cycling, or, its statistical equivalent, cycling less. Substantial declines in numbers of cyclists have been measured by surveys in New South Wales, Victoria, Queensland, Western Australia, the Australian Capital Territory and the Northern Territory. The findings of these surveys are used here to estimate the total effect of the helmet laws in discouraging cycling.

Taking account of these other factors, the contribution of compulsory helmet laws to reducing rates of death and serious injury of cyclists is discussed below, together with the adverse consequences for public welfare.

2. Effect of improvements in roads and motorists’ behaviour

As a motor vehicle was involved in 92 per cent of fatal accidents to cyclists in Australia in 1988 (Attewell and Dowse, 1992), the behaviour of motorists is a critical factor in death and serious injury of cyclists. Following intensified random checks of speed and blood alcohol, and improvements in roads, total road fatalities declined by 30 per cent from 1989 to 1992, from 2804 to 1974. The decline has continued, to 1903 in the twelve months ended October 1993 (FORS, 1993).

The general decline of 30 per cent is reflected in deaths of pedestrians. It would therefore explain half or more of the 58 per cent decline in deaths of cyclists.

3. Decline in number of cyclists

3.1 Findings of surveys

3.11 Victoria

Before compulsory helmets were introduced in Victoria on 1 July 1990, some students at schools which compelled them to wear helmets chose to give up cycling instead (Ref?).

According to Vic Roads report IR 90-15 (1991), the first survey after helmets became compulsory in Victoria showed that the number of cyclists described as adult commuters declined from 5162 to 2098, or nearly 60 per cent, between March and July 1990. The author attributed this to the usual reduction of cycling in winter months, but the July survey was taken in fine weather. It would appear that the helmet law contributed to the decline.

Morgan and others (1991), reporting on surveys directed primarily to measure the use of helmets, made comparisons of matched samples of recreational and commuter cyclists in March 1990 and March 1991, at sites in Melbourne, Ballarat and Shepparton. These showed, in their Tables 17 and 18, declines of 30 per cent in recreational cycling and 32 per cent in commuter cycling from 1990 to 1991.

Monash University Accident Research Centre (MUARC) has conducted four surveys of bicycle use and helmet wearing rates in Melbourne, in November to January 1987/88 and successively in essentially the same 2-week periods in May/June of 1990 (pre-law), 1991 and 1992 (post-law) (Finch and others, 1993a). The 2-week periods were chosen to minimise the effect of different weather conditions. The 1991 survey found that total bicycle use by children had decreased by 36 per cent compared to 1990, with the largest decrease (44 per cent) being by the 12-17 year- old group (Cameron and others, 1992). This age group is included in the higher risk categories for fatalities to cyclists (FORS, 1991).

Finch and others provide, on page 36, data showing the following decreases in numbers of bicyclists observed during the first year of the law: adults 29 per cent, teenagers 46 per cent and children 24 per cent. They go on to say that the numbers increased from 1991 to 1992 as follows: teenagers 6 per cent, children 20 per cent and adults 34 per cent. “As a result of these increases, the number of adult and child bicyclists was not much smaller than the pre-law numbers (a 9 per cent drop in children, 5 per cent in adults).” Later, on pages 43 and 44, they note that different weather may have been a factor in the change in numbers from 1991 to 1992, half of all weekend observation sessions coinciding with rain in 1991 but only 14 per cent in 1992. Another explanation they offer for the increase in numbers in 1992 is a bicycle rally passing through observation site 80. Information obtained from the authors is that the numbers of cyclists observed there were as follows: 1987/88, 129; 1990, 347; 1991, 72; 1992, 451. The 451 amounts to 18.2 per cent of the total number of 2477 cyclists observed in 1992 and site 80 alone accounts for 19 points of the 23 per cent increase in total numbers of cyclists 1991 to 1992.

More comment on the findings of Finch and others is contained in an associated submission from Dorothy Robinson.

3.12 New South Wales

In New South Wales, helmets have been compulsory since 1 January 1991 for adult cyclists, defined as 16 years and older, and since 1 July 1991 for those under 16. A survey of helmet wearing by cyclists was conducted for the Roads and Traffic Authority (RTA) in September 1990 and a second survey in March and April 1991 (Walker, 1991) to allow evaluation of the impact of the helmet law on adult cyclists and to provide a baseline measurement of helmet wearing by cyclists under 16 before helmets became compulsory for them.

The surveys showed a 6 per cent increase in the number of adult cyclists between September 1990 and April 1991. Walker concluded that “it appears clear that the new regulation has not deterred cyclists”, but this is far from clear. As well as the surveys being taken at different times of the year, the first “was conducted in overcast conditions in Sydney and, in some areas, was interrupted by rain whereas the second survey was conducted in sunny conditions.” A greater increase could have been expected.

Walker (1992) conducted a third survey in April 1992 for the main purpose of providing an assessment of the use of helmets by children under 16 before and after the law. It showed that the number of adult cyclists had decreased by 14 per cent and child cyclists by 38 per cent since April 1991. (The RTA’s summary of 14 August 1992 stated the latter figure as 36 per cent, by reason of including school children of 16 and 17.)

As the helmet law was in force for adult cyclists in both April 1991 and April 1992, the 14 per cent decrease in their numbers is not a measure of its discouraging effect on them. It may measure a delayed effect however, perhaps as people became more averse to wearing a helmet or the law was enforced against them.

A fourth survey in April 1993, essentially a replication of the previous surveys, showed a further decline of 11 per cent in numbers of child cyclists, to 45 per cent below 1991 (Smith and Millthorpe, 1993). The greatest decline was in the number of female students cycling to secondary schools – to less than a quarter of 1991.

3.13 Queensland

In 1990 and 1991, branches of the Royal Automobile Club of Queensland conducted surveys to measure the proportions of cyclists wearing helmets (Wikman and Sims, 1990, 1991). The surveys were mainly based on students riding to school and included Brisbane and centres ranging from Gold Coast to Cairns. Data were gathered for 1990 from 29 October to 24 November and for 1991 from 29 September to 24 November, the earlier start being chosen to improve the coverage of all age groups of students.

The wearing of helmets became compulsory on 1 July 1991, between the surveys. It could therefore be expected that the numbers of cyclists recorded, incidental to the purpose of measuring helmet wearing, would indicate the discouraging effect of the law. In fact, the 1991 report says, “Most surveyors commented that ridership was lower than previous years”, but adds, “To compensate for this it was requested that where possible more schools be surveyed”. Consequently, the decline in numbers of riders would have been greater than the 22 per cent shown for schools in total. Indeed, for most centres, where apparently it was not possible to survey more schools, declines of around 30 to 50 per cent were typical.

3.14 Western Australia

Compulsory helmet wearing was introduced on 1 January 1992, but not enforced until 1 July.

As in other states, in Western Australia the primary concern of surveys has been to measure rates of wearing of helmets. Such was the survey of Healy and Maisey (1992). They also commented that the numbers of children cycling to primary schools and numbers of recreational cyclists declined from 1991 to February 1992.

Heathcote (1993) did a wider-ranging survey, including data on numbers of cyclists in 1991 and 1992. The limited data he presents show some decline in numbers of children cycling to school. He suggested that the data do not show any change in the rate of decline, implying it is merely a continuation of a trend of previous years, but this is mere assumption, as he offered no explanation for the previous decline. His conclusion that the helmet legislation was not a significant factor in the decline is similarly no more than an assumption.

Heathcote’s limited observations of “commuter” cyclists indicate an increase in numbers after the helmet law, but his observations, also based on limited data, of cyclists classed as recreational show a decline of over 50 per cent. Therefore, data from automatic counter surveys conducted by Main Roads at the Narrows and Causeway bridges were used. These showed that the number of cyclists crossing on Sundays declined by 38 per cent from October-December 1991 to October- December 1992. Loath to attribute the cause of the decline to the law, Heathcote attempted to explain it by changes in leisure patterns, economic factors, population movements and the weather. These explanations are spurious; the first three could not change significantly in one year and, by his own statement on page 4, observations for all groups were taken only when the weather was fine and suitable for cycling.

Main Roads also counted numbers of cyclists crossing the Narrows and Causeway bridges on weekdays. These data for the period October 1991 to October 1993 are shown in graphical form in Figure 1 and 2, attached. The mean number of cyclists declined between October- December 1991 and October-December 1992 by 9 per cent at the Narrows bridge and 26 per cent at the Causeway bridge. Information from Western Australia Police shows that enforcement of the helmets law intensified in 1993, the rate of issue of infringement notices being 50 per cent higher than in the second half of 1992. Figures 1 and 2 show that this was matched by a further decline in cycling; for example, 10 per cent at the Narrows and 4 per cent at Causeway October-November 1993 compared to 1992. Sharper declines are evident in other months – 43 per cent from April 1992 to April 1993 and 52 per cent May 1992 to May 1993 for both bridges combined. Other factors may have contributed, but this evidence does support the hypothesis that the helmet law has resulted in a substantial reduction in cycling by “commuters” and schoolchildren.

3.15 Northern Territory

Incidental to surveys of bicycle helmet wearing by the Road Safety Council of the Northern Territory (1992, 1993), the following numbers of cyclists were recorded. The horizontal lines indicate the start of the helmet law, 1 January 1992 for cyclists 17 and over and 1 July 1992 for others.

Numbers of cyclists

Date of survey     prim. school     sec. school      "commuter"

1990, August                                            252

1991, April                                             222

1991, August                                            350
                                                  ---------------
1992, April            987              931      |      142
                  --------------------------------
1992, August           995              595             122

1993, May              823              570             131

There was little change pre-law to post-law in the numbers of children cycling to primary school, but a 36 per cent decline in cycling to high school. The decline in numbers of “commuter” cyclists was of the order of 50 per cent.

3.16 Australian Capital Territory

Members of the Cyclists’ Rights Action Group carried out a survey of 325 cyclists in May 1992, shortly before helmets became compulsory in July 1992. When asked, “Would you cycle less if helmets were compulsory?”, 90 or 28 per cent of respondents answered “yes”. Ratcliffe (1993) reported on surveys of bicycle traffic in the ACT before and after that, as follows:

For data over one week in November 1991 and December 1992 respectively: “Based on automatic counts of cycles for one week at 23 cycle path locations, mean weekday cycle path daily volumes were recorded in 1992 to be about one third lower than the similar period in 1991, with mean weekend daily volumes declining by about half.”

“Based on a survey conducted over a single morning … the number of morning peak period cyclists commuting to city and the other three town centres was measured to reduce by an average 21 per cent between November 1991 and November 1992.”

Such declines occurred despite very little enforcement of the law, only 50 traffic infringement notices having been issued from July 1992 to April 1993.

Claiming that it is “not possible with the existing data to draw firm conclusions about the effect of helmet legislation on cycle activity in the ACT”, Ratcliffe attempted to explain away the declines from 1991 to 1992 as not significant or due to the weather. Some preliminary analyses of variance were conducted on data from three of the 23 count stations. The results show that “only in a few cases was a significant difference estimated … . These results derive from the very high daily flow variability”. But Ratcliffe did not explain why tests for significance were not carried out on the much larger numbers for all stations in aggregate. The aggregate declines were from 7290 to 5176 on weekdays and from 5496 to 2876 at weekends. It is inconceivable that these large numbers would not test as significant.

As for the weather as a factor, all bicycle data were collected on rainless days, and detailed records show little variation of weather from 1991 to 1992 on collection days.

Finally, Ratcliffe’s summary of findings of surveys elsewhere is misleading. He said “Reports of bicycle activity in Victoria and New South Wales show that, for the periods before and after introduction of helmet legislation, there was no overall change to cycling in Victoria, and an average reduction of 26 per cent in NSW.” For Victoria, the “period before” is November 1987 to January 1988, 2« years before helmets became compulsory. The “period after” is May/June 1991. The authors of the survey that Ratcliffe cited, Cameron and others (1992), cautioned that the “comparison was made at different times of the year and nearly 3« years apart, and hence should be considered tenuous”, but Ratcliffe did not mention that. The only finding reported by Cameron and others which qualifies as a valid comparison of pre-law and post-law was a decline in cycling by children of 36 per cent between May/June 1990, just before the law came into effect, and May/June 1991. Ratcliffe did not mention it. (The survey of May/June 1990 did not include adults.)

In respect of NSW, Ratcliffe’s summary misrepresented certain of the survey findings. The data he cited (Walker, 1992, Table 9) are from surveys carried out in April 1991 and March/April 1992. In April 1991, the helmet law applied only to adults, and data from the survey then are pre-law only for children. Ratcliffe wrongly designated all 1991 data cited as belonging to the period before introduction of helmet legislation. Then he claimed there was an average reduction in cycling in NSW of 26 per cent. The average is of 14 per cent reduced cycling by adults and 37 per cent by children, but only the latter is a measurement of the decline in cycling from pre-law to post-law. On these figures, Walker had suggested “the new regulation has had the impact on numbers of bicycle riders under sixteen rather than any incidental changes … “, but Ratcliffe disregarded this, saying, “these results hide significant differences in cycling groups, with both reports being cautious in attributing all the changes to cycle activity to the helmet legislation”.

3.2 Analysis of findings of surveys

The surveys which show best the comparisons of numbers of cyclists pre-law and post-law are those of New South Wales and Victoria, and the best data are for child cyclists. But the measured decreases in numbers of child cyclists, 38 and 45 per cent below the base period in NSW in 1992 and 1993 respectively, and 36 per cent in Victoria in 1991, still under-estimate the discouraging effect of helmet laws.

First, some such effect would have occurred in anticipation of the law coming into force. Before and during the base periods for the relevant surveys, May/June 1990 in Victoria and April 1991 in NSW, publicity campaigns encouraged the wearing of helmets, and in April 1991 in NSW it was compulsory for adult cyclists. Many parents would in effect have anticipated the law by applying it to their own children. Tables 19 and 20 of Walker (1992) show helmet wearing by children increased from 12.7 per cent in September 1990 to 25 per cent in April 1991, but some children would have responded by giving up cycling or cycling less. The slight decrease in the number of child cyclists from September 1990 to April 1991 (Tables 19 and 20) where an increase could be expected provides evidence of this. As a result, the number of child cyclists recorded in the April 1991 base period of the third survey in NSW would have been lower because of the law. The declines in cycling measured subsequently would therefore under-estimate its full effect. Instead of the 36 and 38 per cent measured, the actual decline in the number of child cyclists pre-law to post-law is estimated at 40 per cent.

Second, the discouraging effect has been shown to continue post-law. For cyclists under 16 in NSW, Smith and Milthorpe (1993) measured a decline of 10 per cent in the second year – see their Table 3.2. For adult cyclists, Walker (1992) measured post-law declines of 14 per cent in the first year and a further 10 per cent in the second year – see his Table 3.10. Data from cycle counters operated by Main Roads in Western Australia also show post-law declines.

Third, any true measure of the effect of the law must be on the basis that it is enforced. The 45 per cent decrease in the number of child cyclists in NSW from 1991 to 1993 occurred without full enforcement – as 26 per cent of them were still not wearing helmets in April 1993. Table 3.2 of Smith and Milthorpe (1993) shows the numbers 6270 in April 1991, 3887 in 1992 and 3478 in April 1993 (after adjusting for cyclists at recreation areas in Albury not included before). Calculating from the table, those not wearing a helmet decreased from 4295 to 933 to 889. If the law were fully enforced, to ensure a wearing rate of virtually 100 per cent, some of the 889 persistent non-wearers would choose to cease cycling, or would cycle less. The number can be estimated from Table 3.2. Of the 4264 cycling without a helmet in 1991, 563 chose to don a helmet and keep on cycling until 1993, but 2792 – five times as many – had given up cycling by 1993. On the basis that five out of six, i.e. 740, of the 889 persistent non- wearers would choose similarly, only 2738 would still be cycling, a decline of 56 per cent from 1991.

The 56 per cent includes the decline of one year post-law. Some further decline seems likely. Adding the effect of anticipation, it is estimated that the long term effect of the law will be to discourage 60 per cent of children from cycling. As there are 3 million children aged 5-16 in Australia, perhaps a million aged say 10 or more would be discouraged, with consequent detriment to national welfare – see below. For Western Australia, the corresponding number would be over 100000.

4. Effect of compulsory helmet laws on death and injury

Deaths of cyclists in road accidents in Australia decreased from 98 in 1989 to 41 in 1992. Of these, deaths of children up to 16 were 44 and 17 respectively. How much of these decreases can be attributed to compulsory helmet laws?

With small numbers, random variations are relatively large; pre-law, the total of 98 fatalities in 1989 compares with 87 in 1988, and for cyclists aged up to 16 the difference is proportionately greater: 44 in 1989 and 33 in 1988 (FORS, 1989, 1990). Fatalities might well have been high by chance in 1989. Setting that point aside, the 30 per cent general decline in road fatalities from 1989 to 1992 would explain a decrease from 98 to 68 in deaths of cyclists in total, and from 44 to 31 in deaths of child cyclists. As the helmet law was not in force everywhere in Australia throughout 1992, its discouraging effect on cycling by children would be somewhat less than the 56 per cent estimated above. Putting it at 50 per cent would explain a further decrease in deaths to 16. The actual number was 17. It is therefore not evident that the helmet laws made any positive contribution to reducing deaths of child cyclists.

Have the helmet laws contributed to reducing serious injury to cyclists? Data are available for Victoria, New South Wales and Western Australia.

Victoria

In a study entitled “Head injury reductions in Victoria two years after introduction of mandatory helmet use”, Finch and others (1993b) of MUARC used data based on claims to the Transport Accident Commission for bicyclist casualties who were involved in collisions with a motor vehicle. The decrease in the number of bicyclists killed or admitted to hospital after sustaining head injuries was 48 per cent in the first post-law year (year ended June 1991) and it reached 70 per cent in the second year. The corresponding decreases for those killed or admitted to hospital who did not sustain head injuries were 23 per cent and 28 per cent.

Finch and others concluded that the introduction of the law had been accompanied by an immediate large reduction in the number of bicyclists with head injuries. “Apparently this has been achieved through a reduction in the number of bicyclists involved in crashes (at least partly through a decrease in bicycle use by children and teenagers) and a reduction in the risk of head injury of bicyclists involved in crashes”. They were understandably reluctant to conclude that the reduction in head injuries was an effect of the helmet law; the numbers are fairly small; considerable fluctuations have occurred in the past; and these reductions occurred at a time of improved behaviour of motorists due to initiatives directed at drink/driving and speeding, and of publicity about cyclists.

Vulcan and others of MUARC reported these and similar findings in Morbidity and Mortality Weekly Report 42, 18, 14 May 1993 of the US Department of Health and Human Services. The editors of the report commented: “The reduction in number of bicyclists with head injuries following implementation of the law in Victoria may reflect a combination of several factors, including the decline in bicycle use by children … the effect of educational efforts and publicity … initiatives to reduce motorists’ speeding and drinking and driving. Further assessment is needed to identify the most important components … and to measure the effectiveness of the program in reducing head injuries.”

Factors other than those suggested by Finch and others apparently were operating to reduce the proportion of head injuries in the total of injuries. Data for claims to the Transport Accident Commission by both cyclists and pedestrians in the years 1987-92 are attached as A. For cyclists, from the pre-law years 1988 and 1989 to the post-law years 1991 and 1992 claims for head injuries declined by 56 per cent and other injuries by 33 per cent – similar to the findings of Finch and others. But the data for pedestrians show this occurred for pedestrians too, the corresponding declines being 31 per cent and 14 per cent. The numbers appear to be large enough for this difference to be significant.

Reduced speed of motor vehicles and other changes in how they are driven may be an explanation for the difference. Discussion of the effect of changing speed on the seriousness of accidents in Corner and others (1987) shows that such effects are not simple. Research reported by Janssen and Wismans (1985) showed similarities in the impact of pedestrians’ and cyclists’ heads with vehicles, but that impact of a cyclist’s head with the windshield or even with the roof is much more likely than for a pedestrian.

The Victorian Injury Surveillance System (VISS), which monitors injuries to children under 15 years old, has published statistics for admissions of cyclists aged 5 to 14 years to five hospitals in Melbourne in the years 1989-92. Admissions for head injury declined by 32 per cent between 1989 and 1992, but this is unremarkable as greater rates of decline were shown by total road fatalities in Victoria, 49 per cent (FORS, 1989, 1990), and admissions of cyclists for other injuries, 35 per cent. From these data, it is not evident that the helmet laws made any contribution.

McDermott and others (1993) undertook an evaluation of the efficacy of helmet use by comparison of crashes and injuries in 366 helmeted and 1344 unhelmeted casualties treated from 1987-89 at Melbourne and Geelong hospitals. They noted that the relative risk of head injury in helmeted cyclists compared with unhelmeted involved in crashes cannot be estimated directly from this study. They concluded that approved helmets reduced the risk of head injury by at least 39 per cent, and the severity of injury to the head. There were several anomalies, however. First, they concluded that helmets reduced injuries to the face – not covered by a helmet. When questioned, McDermott was unable to offer a satisfactory explanation.

Second, they found that the frequency of neck injury was increased in helmeted casualties, and offered no explanation. Third, helmeted casualties had a greater proportion and more severe non-head injuries than unhelmeted. They offered a partial explanation for the greater proportion, but admitted to being unable to explain why the severity was greater.

All in all, the data adduced here underline how little is known about head injuries to cyclists and the effects of helmets. As data are accumulating, more unexplained effects are becoming evident and the value of helmets in reducing injury coming more into question. Further, indications are emerging (Robinson, 1993) consistent with the finding of Rodgers – see our Appendix 1 – of a positive correlation between use of helmets and casualties to cyclists.

A matter for concern is the reliance that can be placed on studies made in the various states and territories. Shortcomings of Ratcliffe’s study in the ACT have been pointed out above. The TAC data for pedestrians puts the findings Finch and others in a different light, but they made no mention of pedestrians in their report.

New South Wales

Governments have cited sharply reduced deaths of cyclists in New South Wales in 1991 and 1992 following the introduction of the helmets law as evidence of its efficacy. Robinson (1993) has analysed statistics from the Road Traffic Authority’s annual publication Road Traffic Accidents in NSW. The average number of deaths in 1991 and 1992, 8, was 59 per cent lower than the (pre-law) average of 1989 and 1990, 19.5, but the decline can be explained by other factors. First, with these small numbers, relatively large variations can occur by chance. Pre-law, there were 34 deaths in 1988 followed by 19 in 1989 and 20 in 1990. Second, at least 25 points of the decline can be explained by fewer cyclists being on the road. Third, the hazard to cyclists due to motor vehicles was lower, owing to breath testing and other factors. The decline of 32 per cent in deaths of pedestrians is a measure of the reduction in this hazard. It is noted that 12 of the 16 cyclists killed in 1991 and 1992 were wearing helmets.

The statistics for serious injuries tell a similar story. Total deaths and serious injuries declined at much the same rate from 1989/90 to 1991/92 for all road users; deaths and injuries to cyclists as a percentage of these have therefore remained fairly constant, as follows:

  Year                            87    88    89    90    91    92
  Killed or seriously injured    3.9   3.8   3.7   4.4   4.0   3.8

This result has occurred despite the decline in numbers of cyclists on the road and increased wearing of helmets.

Robinson also used the NSW statistics for death and serious injury and for helmet wearing in 1992 to assess the protective effect of helmets. In that year, when 171 adult and 97 child cyclists were killed or seriously injured, Walker (1992) recorded 85 per cent of adult cyclists and 76 per cent of children in April as wearing helmets. Robinson reasoned that, if wearing a helmet had no protective effect, the proportions of dead and injured wearing a helmet would be the same, which she calculated as 81.7 per cent for adult and child cyclists combined. The actual proportion of 82.4 per cent is in close agreement and even slightly higher. There are minor uncertainties in the data, but it is clear that they do not demonstrate any reduction in the probability of death or serious injury from wearing a helmet.

Western Australia

For Western Australia, Healy and Maisey (1992) claimed that the growing rate of helmet wearing was reflected in reduced admissions to hospitals for intracranial injuries. On the basis of that, they evaluated costs and benefits of mandatory helmet wearing.

Healy and Maisey said on page 21 that the 5-12 age group indicates best the possible association between bicycle helmet wearing and admissions to hospital for intracranial injuries. In their figure 13, the plot of intracranial injuries to that group shows a steady decline from 113 in 1981 to 62 in 1990 against a rising trend in helmet wearing. But the data for helmet wearing are only for 1986 onward. Also, the plotting of injuries as 3-year averages masks substantial year-to-year fluctuations; as shown in their Table 8, injuries in 1988 were not appreciably lower than 1986. More important, they take no account of the declining rate of cycling; Table 7 of Heathcote (1993) shows that for the 5-12 age group cycling declined rather faster from 1988 to 1990 than admissions for intracranial injuries. Finally, the attempt to correlate declining intracranial injuries with increasing wearing of helmets is discredited by the data for the 13-17 age group. Despite little decline in their rate of cycling and a low wearing rate, intracranial injuries to them declined at least as much as the 5-12 year-olds. The basis of Healy and Maisey’s evaluation of costs and benefits is therefore unsound.

Heathcote (1993) presented, in Table 13, numbers of fatalities to cyclists in the years 1986-92, and in Table 14 and Appendix 10, numbers of cyclists suffering head injury in 1981-92. These show that fatalities declined from 8 in 1991 to 1 in 1992, and head injuries from 196 to 110. He concluded that the helmet law “reduced the number of head injuries and fatalities suffered by cyclists”. This conclusion is not sound. The decline in fatalities could well be due to chance: 1986 to 1987 showed a greater decline, from 14 to 4, and 5 fatalities occurred in the first 10 months of 1993 (advice from Western Australia Police).

The decline in head injuries from 1991 to 1992 would be statistically significant, but is not proved to be a “close approximation of head injuries that may be reduced due to helmet wearing”, as Heathcote suggested. In any case, the reduction occurred partly through the mechanism of discouraging cycling. Fewer cyclists were on the road, with reported crashes declining by 21 per cent and total injuries by 16 per cent. Head injuries declined even more, it is true, from 23 per cent to 15.4 per cent of total injuries, but the proportion of head injuries in the total has fluctuated greatly before, 1991 being the highest for 5 years and 1989 at 16.7 per cent being little higher than 1992.

The conclusion is that it is not possible to measure from these data what contribution the wearing of helmets made to reducing head injuries.

5. Negative effects of compulsory helmets on national welfare

No significant positive effects of helmet laws in reducing death or serious injury being evident, their negative effects on national welfare become relatively more important.

5.1 Distraction from other measures

First, the emphasis that governments place on the wearing of helmets distracts attention from measures for preventing accidents. Helmets of course can merely mitigate the effects of an impact and do not prevent accidents at all. Hillman (1993) discusses the suggestion that wearing a helmet may give cyclists, especially children, the false confidence to take more risks.

More attention should be given to education and training of child cyclists, and action should be taken to counter commercial promotion of cycling by children too young for it, and to dispel the impression created by advertising that bicycles are toys for doing tricks. Mathieson (1986) cited studies in America that showed that trained and experienced cyclists are 4 times less likely to be involved in an injury accident than untrained adults, and 7 times less likely than children.

As 92 per cent of fatal accidents to cyclists in 1988 involved a moving motor vehicle, it is imperative that action should be taken to protect cyclists from motorists, including more education to induce young motorists in particular to have greater care for cyclists, but governments have done little.

In Britain, the British Medical Association (1992) said that “resources are almost certainly better directed towards the prevention of accidents rather than the limitation of the damage cause by them. The introduction of mandatory wearing of cyclist helmets shifts responsibility for the safety of cyclists to the cyclists themselves … It seems more appropriate that responsibility should be borne by those causing the injuries, namely drivers of motor vehicles”. The BMA added: “The wearing of helmets must be placed in the context of other means of protecting cyclists, such as motor-vehicle speed reduction, improving the conduct of drivers, and developing cycle networks and enhancing road design for the benefit of cyclists.”

5.2 Change to mode of travel

Many children who reduce their rate of cycling will travel by car instead, or walk – and have accidents. As noted above, 42 child passengers in cars and 39 child pedestrians died of head injury in 1988 compared to 11 cyclists. The 1987 report of the Parliamentary Inquiry in Victoria which recommended compulsory helmets showed, for the years 1980-85, that the rate of death and injury per 100 000 children of 0-16 years was lower for cyclists than for pedestrians, in total and in all age groups except 12-16 years. Moreover, there was a consistently lower rate of head injury to cyclists than pedestrians. Deaths and injuries to children – and to adults – who change to another mode of travel rather than wear a helmet therefore should be debited to the helmets laws. Measuring them of course would be difficult.

5.3 Loss of skills in cycling

Children who opt out of cycling rather than wear a helmet will fail to learn the skills of cycling. Instead of beginning to develop road sense at an early age with a slow vehicle unlikely to cause injury to others, they will begin with a motor vehicle. Also, not being familiar with cycling themselves, they will be less aware of cyclists and less likely to be considerate of them. Increased danger for the remaining cyclists will result.

People who opt out of cycling in their youth will be unlikely to take it up in their adult life, and, not having developed skills in cycling at an early age, are likely to be prone to accidents. The outcome will be a society more dependent on motor transport.

5.4 Effects on health

Less cycling will mean loss of beneficial exercise. In its book the British Medical Association (1993) described health benefits gained through the exercise of cycling. It cited several studies to measure benefits in terms of life years. One study concluded that those who cycled 60 miles a week from the age of 35 could add 2« years to their life expectancy. The BMA concluded (p. 121) that “the benefits gained from regular cycling are likely to outweigh the loss of life through cycling accidents for the current population of regular cyclists”. The BMA went on “The net benefits of cycling as an effective and accessible form of exercise should therefore be promoted vigorously by government agencies, policy-makers, health authorities … cycling can make a very real contribution to improving the health of the nation.”

As estimated above, the helmet laws could result in a million children aged 10 or more in Australia and more than 100000 in Western Australia opting out of cycling and losing its benefits for their health. Cycling combines transport and exercise. The benefits of the exercise are therefore gained at little or no cost in time where people cycle to work, school, shops or other places they need to get to. Extra costs in terms of time will be incurred where travel, by motor vehicle, and exercise are separate activities. Is it not recognised that one of the most effective forms of preventive medicine is for teenage children, especially girls, to take more exercise? Cycling to school may be the best way, but, ironically, the discouraging effect of compulsory helmets is greatest for this group.

Some cyclists say that wearing a helmet aggravates migraine and other ailments. Skin cancer is of increasing concern in Australia, but helmets provide little protection against the sun. Transport authorities argue that peaks can be fitted to helmets or supplementary caps worn, but these do not protect the sides of the face. According to The Canberra Times of 28 August 1992, researchers at Dryburn Hospital in Durham, England, found that hats with brims at least 7.5 cm wide are needed “to provide reasonable protection around the nose and cheeks, where non-melanoma skin cancers commonly occur”. The Federal Minister for the Environment, Ros Kelly, in November 1993 advised Australians to adopt a sun-smart lifestyle to reduce the incidence of skin cancers. She pointed out that the thinning of the ozone layer increases the risk of skin cancer and cataracts. Compulsory helmet laws counteract her advice and their long-term effect is likely to be more skin cancer. In time, some of those affected may litigate to obtain compensation from governments.

6. Findings

A critical factor in death and serious injury to cyclists is the behaviour of motorists.

The general decline in road deaths and injuries following introduction of random checks of speed of motor vehicles and blood alcohol of drivers is a factor in a decline in deaths and injuries of cyclists in recent years.

Surveys carried out before and after introduction of compulsory helmet laws in New South Wales, Victoria, Queensland, Western Australia, the Northern Territory and the Australian Capital Territory have all shown increases in rates of helmet wearing, but also sharp declines in numbers of cyclists.

The earliest and among the best data of decline in numbers of cyclists are of child cyclists in Victoria, where total bicycle use by children decreased by 36 per cent in a year following introduction of the helmet law.

In New South Wales, surveys have shown a decline of 38 per cent in child cyclists in the first year and a further decline of 11 per cent in the second year of the helmet law – a total decline of 45 per cent.

For every child cyclist induced by the law in New South Wales to wear a helmet, five chose to give up cycling instead.

Many of those gave up cycling would perforce have adopted another mode of travel and have had accidents while travelling by that mode; any deaths or injuries thus incurred – number unknown – should be debited against the helmet law.

Based on data from New South Wales, it is estimated that the full effect of the helmet law with rigorous enforcement is a 60 per cent reduction in cycling by children, and the effect is likely to increase.

Some reductions in head injury may have occurred as a result of increased wearing of helmets, although the data are not conclusive and the number who may have benefited is very small compared to those giving up cycling in response to the law.

Indications are emerging of a positive correlation between use of helmets and casualties to cyclists.

A matter for concern is the reliance that can be placed on studies made in the various states and territories.

The helmets law has distracted from other measures to protect cyclists and will result in loss of skills and health benefits of those who give up cycling rather than wear a helmet, the loss of health benefits alone being likely to outweigh any benefits in mitigation of head injury.

References

Attewell, R.G. and Dowse, M.J., Fatal crash types. Analysis of 1988 fatality file, Federal Office of Road Safety report no. CR 105, Canberra 1992

British Medical Association, Cycling towards health and safety, Oxford University Press, Oxford, New York, 1992

Cameron, M., Heiman, L. and Neiger, D., Evaluation of the bicycle helmet wearing law in Victoria during its first 12 months, Report No. 32, Monash University Accident Research Centre, Melbourne, July 1992

Corner, J.P., Whitney, C.W., O’Rourke, N. and Morgan, D.E., Motorcycle and bicycle protective helmets: requirements resulting from a post crash study and experimental research, Federal Office of Road Safety report no. CR 55, Canberra, 1987

Finch, C.F., Heiman, L. and Neiger, D., Bicycle use and helmet wearing rates in Melbourne, 1987 to 1992: the influence of the helmet wearing law, Monash University Accident Research Centre report no. 45, February 1993

Finch, C.F., Newstead, S.V., Cameron, M.H. and Vulcan, A.P., Head injury reductions in Victoria two years after introduction of mandatory bicycle helmet use, Monash University Accident Research Centre report no. 51, 1993

FORS, Road fatality statistics Australia, , Canberra, 1991.

FORS, Road Crash Statistics Australia, November 1989 and June 1990, Federal Office of Road Safety, Canberra

FORS, Day-to-Day Travel in Australia 1985-86, Federal Office of Road Safety, Canberra, 1989

Federal Office of Road Safety, Road Fatality Statistics Australia, monthly report, April 1993, Canberra

Healy, M. and Maisey, G., The impact of helmet wearing legislation and promotion on bicyclists in Western Australia, Traffic Board of Western Australia, Perth, 1992

Heathcote, B., Bicyclist helmet wearing in Western Australia: a 1993 review, Traffic Board of Western Australia, Perth, 1993

Hillman, M., Cycle helmets the case for and against, Policy Studies Institute, 100 Park Village East, London, 1993

Janssen, E.G. and Wismans, J.S.H.M., Experimental and mathematical simulation of pedestrian-vehicle and cyclist-vehicle accidents

Lambert, J., Number of cyclists, bicyclist trips and bicyclist accident reports in Victoria, 1986-1989, VICROADS internal report, May 1990, reference 18 cited in Victorian Bicycle Strategy, VICROADS, November 1991.

Mathieson, J.G., Gaps in current knowledge and effects on counter measures, Bikesafe 86 conference, Newcastle

McDermott, F.T., Lane, J.C., Brazenor, G.A. and Debney, E.A., The effectiveness of bicyclist helmets: a study of 1710 casualties, The Journal of Trauma, 34, 6, pp. 834-845, 1993

O’ Rourke, N.A., Costello, F., Yelland, J.D.N. and Stuart, G.G., Head injuries to children riding bicycles, Medical Journal of Australia, Vol. 146, 15th. June 1987

Parliament of Victoria, Social Development Committee, Safe Roads for Children, inquiry into child pedestrian and bicycle safety, second report, 1987, Tables 5, 6, 11 and 12

Ratcliffe, P., Bicycling in the ACT – a survey of bicycle riding and helmet wearing in 1992, ACT Department of Urban Services, Canberra, 1993

Road Safety Council of the Northern Territory, Bicycle helmet wearing in the Northern Territory, GPO Box 1176, Darwin, 1992

Road Safety Council of the Northern Territory, 1993 bicycle helmet survey report, GPO Box 1176, Darwin, 1993

Robinson, D., submission to Select Committee on Road Safety, Parliament of Western Australia, 1993

Smith, N.C. and Milthorpe, F.W., An observational survey of law compliance and helmet wearing by bicyclists in New South Wales – 1993, for the New South Wales Roads and Traffic Authority, Sydney, 1993

Victorian Injury Surveillance System, Hazard No. 6, Page 6., 1990

Vic Roads, Initial Effects of Mandatory Bicycle Helmet Wearing Legislation”, July 1990, report IR 90-15, Melbourne, 1990

Walker, M.B., Law compliance and helmet use among cyclists in New South Wales, April 1991, for the New South Wales Roads and Traffic Authority, Road Safety Bureau consultant report CR 1/91 Sydney, 1991

Walker, M.B., Law compliance among cyclists in New South Wales, April 1992, a third survey, for the New South Wales Roads and Traffic Authority, Network Efficiency Branch, Sydney, 1991

Wikman, J. and Sims, C., Bicycle helmet wearing survey 1990, Royal Automobile Club of Queensland, Brisbane

Wikman, J. and Sims, C., Bicycle helmet wearing survey 1991, Royal Automobile Club of Queensland, Brisbane

What do you think of this post?
  • Boring (0)
  • Useful (0)
  • Interesting (0)
  • Insightful (0)

A Review of the South Australian Office of Road Safety Report 8/94

1. Introduction

This is a review of the South Australian Office of Road Safety report 8/94 subtitled “Evaluation of the Compulsory Helmet Wearing Legislation for Bicyclists in South Australia”. This report (herein referred to as SAORS 8/94) shows that authorities in South Australia have been committed to the policy of helmet wearing for cyclists since 1984, if not earlier. At that time, indeed even now, the efficacy of helmet wearing as a means of reducing injury to cyclists was far from established by scientific studies. The authorities in South Australia relied on a study by Dorsch and others, but its findings were preliminary only. The commitment to the policy was therefore premature. Clearly, if a study were now to reveal that fact, and that the helmets legislation has not worked, or even been counter- productive, persons who were party to the decision to introduce it would be severely embarrassed at the least. The South Australian Office of Road Safety is such a person, being an arm of the Department of Transport. SAORS 8/94 is therefore not a disinterested assessment, as becomes evident from scrutiny of it.

That the authorities in South Australia, and elsewhere in Australia, had no serious doubts about the efficacy of helmet wearing is evident from their failure to establish systems to monitor the effects of helmets legislation, in particular the effect of discouraging cycling.

SAORS 8/94 is based on fairly limited data from which the authors concluded that the helmets legislation has been successful in reducing head injuries and recommended that it be continued. This recommendation appears to have been based as much on the author’s unquestioning faith in helmets as on any findings in their report. Legislators in other Australian States and Territories have since cited the SAORS 8/94 study in support of their own helmets legislation, but its findings need to be seriously questioned. Comment is first made on the study by Dorsch and others, then on the three measures by which SAORS 8/94 evaluates the effect of the helmets law, namely the number of cyclists (exposure), helmet wearing rates and the number of hospital admissions for cyclist casualties.


2. The Dorsch Study

Page 1 of SAORS 8/94 notes a study (Dorsch, 1984) which had shown “the chance of death in a cycling accident decreased by a factor of 19” when wearing a hard-shell helmet as opposed to no helmet. However, data from NSW from 1992-94 show that 80% of cyclists killed on the roads in NSW (RTA, 1992-94) were wearing helmets (excluding cases where helmet wearing status was unknown), which is similar to the proportion of cyclists observed wearing helmets (76% for children and 85% for adults). This is hardly even close to a factor of 19 – more like a factor of one.

The House of Representatives Standing Committee on Transport Safety noted in its 1985 report that the 1984 paper on research by Dorsch and others “has received almost universal acceptance by bicycle groups who have been working for many years to have bicycle helmets widely accepted on the basis of their effectiveness in reducing head injuries”. Like the Committee itself, bicycle groups assumed in advance of evidence the efficacy of helmets in protecting against injury and welcomed any findings, however tentative, that favoured their assumption. Certainly, the Dorsch paper has contributed to knowledge, but has been largely discounted by subsequent researchers.

Dr. Dorsch gave evidence to the House of Representatives Standing Committee on Transport Safety 1985. On page 901(a) of evidence she said: “One has to be very careful in making estimates of how effective universal bicycle helmet usage would be in reducing deaths and serious injuries … People who are wearing what we regarded as the good hard helmet … had 19 times less risk of suffering a fatal head injury. That was a hypothetical procedure. … It was based largely on an adult group of cyclists and because we went through a rather hypothetical statistical procedure to arrive at those numbers, I think one would have to be very careful in generalising those findings to very young bicyclists. … One has to be very careful in making estimates of how effective universal bicycle helmet usage would be in reducing deaths and serious injuries … In our paper we did, sure, put estimates on it but as a very hypothetical procedure. I was a bit distressed by some of the reports I had seen that suggested that 75% of deaths could be prevented by everyone wearing very good hard helmets. “. Here we point out that the Australian Standard for bicycle helmets was amended in 1990 to allow helmets with a soft shell. This amendment was made to make helmet wearing more acceptable, but was contrary to the recommendations of commissioned research.

The authors (Dorsch and others) introduced their published paper of 1987 with the words, “In the past, evaluation of helmet efficacy has been based on laboratory tests of limited relevance to real crashes. … Helmets for bicyclists could do much to reduce deaths and injuries among crash-involved riders. While few people would doubt this assertion, there are currently no quantitative data demonstrating the efficacy of bicycle helmets in real crashes.”

The authors sent 1321 questionnaires to members of bicycling clubs in South Australia, seeking information about their most recent crash. Out of 866 usable responses, “197 bicyclists reported a crash within the last five years in which they had struck their head or helmet. … it was estimated that the risk of death from head injury was considerably reduced for helmeted relative to unhelmeted bicyclists. … Further research is needed to confirm and refine our findings.”

The authors themselves acknowledged limitations of their study. Their sample was mainly drawn from members of bicycle racing clubs, and therefore would be far from representative of the generally younger and slower-travelling general population of cyclists. Thompson and others (1989), noted their findings and added, “Because of methodologic limitations, none of the available studies have produced compelling evidence of the effectiveness of bicycle helmets.” Hillman (1993) made comments to similar effect.

The Dorsch study also found 62% of cyclists who reported hitting their heads were wearing helmets at the time, but the percentage of helmet wearers would have been extremely low; by 1990, after 4 years of promotion, it had reached only 15% for cyclists over 15. This suggests that helmeted cyclists are more likely to have an accident and/or strike their heads. This could also be related to an observation that helmeted cyclists are often very keen to recount the incident of how their helmet “saved their life”, and may therefore have been over- represented in the questionnaire because they were more likely to respond. Any over-representation of helmeted cyclists in the data may have distorted the results.


3. Exposure (i.e. Reduction in number of cyclists)

South Australian authorities did no systematic monitoring of numbers of cyclists – as they say, “due to the disparate nature of the results from different sources, it is not possible to be conclusive about the effect of the requirement to wear bicycle helmets on the number of cyclists”. They guessed, on page 32, that the decrease in the number of cyclists was the same as the decrease in the “non preventable injuries”, but it was substantially greater in NSW where non-head injuries to children declined by 13 per cent (RTA), but cyclist numbers declined by 39 per cent (Walker). As their guess is also a factor in their calculations of “helmet effect”, those too are only guesses.

SAORS 8/94 cited cycling surveys and hospital data to determine the effects of reduced exposure to cycling on a change in the occurrence of head injuries. The authors admitted that due to the inadequacy of the various sources it is not possible to be conclusive about the effect of helmet legislation on number of cyclists. In other words, the South Australian Government was negligent. They should have ensured proper and comprehensive surveys were in place before and after the law was introduced. Indeed the second recommendation of the report was that “regular and more representative surveys be conducted”, but it’s a bit too late for that now!

In a letter dated 2 February 1996, SA ORS advised that they proposed to conduct future bicycle counts at suburban checkpoints, in addition to those already conducted at schools and around the city of Adelaide. It is no longer possible to determine accurately the extent of any decline in number of cyclists due to helmet legislation. The proposed surveys could be expected to show an increase in cycling from year to year, but this should not be used to claim that cycling has recovered from any loss due to compulsory helmets, as cycling around Australia was reported to have been increasing rapidly before any helmet laws were enacted. The Government should still be encouraged to conduct these surveys however, as they may prove highly useful for monitoring trends should the helmets law be repealed.

Comments on survey methodology: Self-reporting surveys are at best unreliable. The only reliable measure of numbers of cyclists is to count them as they pass given checkpoints. The exact same checkpoints should be used for both before and after surveys, and where possible even the same people employed at the same checkpoints. The checkpoints should be strategically placed so as to get a true representation of all cyclists (for example, some surveys in the past have counted only commuters, or only children entering schools). The surveys should be conducted at exactly the same time of the year since there have been shown to be great variations from month to month, and as much as possible in the same weather conditions. This was done in NSW for children (although, as is typical in these surveys, the real purpose was to record the helmet wearing rate) and, compared to the survey in April 1991, just pre-law, revealed a reduction in cyclists of 36 per cent by April 1992 and 43 per cent by April 1993.

3.1. Health Omnibus Surveys – Frequency of Cycling

These surveys showed no significant decline in cycling. The findings are questionable for a number of reasons which the authors of SAORS 8/94 failed to identify.

1) The before and after surveys were conducted in 1990 and 1993. 1991 was when the law came in, but what happened with 1992? Thus we have a three year gap between the before and after periods during which any number of factors other than a helmets law may have influenced cycling.

2) The data were all self-reported. Reliability is therefore extremely questionable.

3) The questions asked fail to quantify cycling sufficiently. Suppose that a person cycled every weekday before the law, but afterwards only once per week? They would still be in the “once per week” category and no decline would have been recorded for them, but their decline in cycling would actually have been 80 per cent. The questions were totally inadequate to record any decline in cycling due to compulsory helmets.

4) Tables 6a and 6b record that about half of bicycle trips and the greatest increases for bicycle trips for children under 15 years were on their own property, where they don’t have to wear a helmet!

In a letter dated 2 February 1996, SA ORS advised that they would redevelop relevant questions for inclusion in the annual Health Omnibus Survey.

3.2. City of Adelaide Bicycle Cordon Count

These surveys recorded very similar results for the years 1985 till 1992 (except for 1988 which was attributed to changed survey conditions for that particular year). The authors noted that 1991 (immediately after the law was introduced) actually recorded a slight increase. No mention was made of weather conditions though. The authors also failed to do a test for significance. The 2.9% increase in 1991 could well be within the bounds of normal variance as there appears to be some degree of variation in the data from year to year.

In Table 7, the survey for 1993 showed a 15 per cent drop in cycling, though the authors took great pains to try and explain this away to the weather and the impending Grand Prix. The surveys were delayed by the weather and the authors reasoned that fewer people may have cycled due to uncertainty about the weather. They failed to reason that (bearing in mind the surveys were eventually conducted in fine weather), cyclists may have been keen to get out and cycle having been kept indoors by the previously bad weather and further, because of the delays in the survey, it was getting closer to the summer months when the weather gets warmer and more people ride their bicycles.

Since the Grand Prix was close to the time of the surveys the authors reasoned that fewer people may have cycled due to uncertainty about road closures or detours. They failed to reason that people may have wanted to cycle near the Grand Prix circuit out of curiosity, and that bicycles are less susceptible to road closures and traffic jams than cars. Those people who do not wear helmets may also have cycled less because of the presence of police officers accompanying the road closures and detours.

Another observation which could be made is about the lack of a decline immediately after the law, followed by a 15 per cent decline two years after the law. This could perhaps be related to the characteristics of the commuter cyclist. The authors pointed out that this survey tended to record mainly commuter cyclists in city traffic. Commuter cyclists in city traffic are probably more likely than the average cyclist to wear a helmet in the first place and more likely to start wearing a helmet because of a law, and less likely than recreational cyclists to reduce or stop cycling. Immediately after the law the non-helmet wearing commuter cyclist may have continued to ride as before either with or without a helmet. Two years later, some of those wearing helmets against their will may have become discouraged with the reality of wearing a helmet which they find uncomfortable, and most of those not wearing helmets have by now felt the wrath of the law, or even the wrath of people who make it their business to yell at people for not wearing a helmet. The net effect could be a delayed decline in cycling. People who have given up cycling under these circumstances are unlikely to take it up again so long as there is still a requirement to wear a helmet.

It would seem that almost anything can be read into these surveys. The reasoning which the authors applied (in contrast to ours) to the results of the cordon count would seem to indicate that they had a bias which was to dismiss the possibility that the law has reduced cycling.

3.3. Observational Studies of Helmet Wearing Among South Australian School Children

The authors note that Harrison’s (1994) study of school children showed a 38 per cent decline in cycling from September 1988 to March 1994. Due to seasonal factors, however, cycling is more popular in March than September in southern Australia; at checkpoints in Western Australia in 1993 and the Australian Capital Territory in 1993/94, less than half the numbers of cyclists were counted in September as in March. Given also the general increasing trend of cycling shown in other states in the period before compulsory helmets were introduced and that there is a six year before/after period, the decline due to the helmets law could well have been much greater than 38 per cent.

These facts are in contrast to the arguments of the SAORS 8/94 authors, who on page 31 attempt to pass this decline off as a result of a decrease in popularity of bicycles, and increasing concern of parents about the safety of children travelling to school alone. One very likely reason for bicycles becoming less popular, would be the fear put into people as a result of Government helmet propaganda (for example, television commercials showing eggs being hit by hammers). As for the other point, surely children would be at much less risk from “the Bogey man” with the increased speed and mobility of a bicycle compared with walking to school or even walking to a bus stop, so are the authors saying that 38 per cent of parents have decided to drive their children to school rather than let them ride their bike? This would mean an increase in motor traffic, in particular around schools. It can be argued that cars stopping to drop children off create a dangerous safety environment for children. Further, a one person- bicycle trip would have been replaced by three person-motor vehicle trips since the parent must drop their child off and then return home. Also, some children who walk instead of ride will suffer injury.

3.4. Other Cycling Surveys

Given the data available, the authors have rightly pointed out that “it is not possible to be conclusive about the effect of the requirement to wear bicycle helmets on the number of cyclists”. However there are some pre and post law cyclist counts from other states which provide data with considerable reliability, and they all indicate rather large declines. It may be unreasonable to assume that South Australians are significantly different in their “acceptance” of the helmets law than other Australians.

Here is a brief summary of surveys that we are aware of:

1) Pre-law in Victoria, some students at schools which compelled them to wear helmets chose to give up cycling instead (evidence given to House of Representatives Standing Committee on Transport Safety, 1985, page 1078).

2) According to Vic Roads report IR 90-15 (1991), the number of cyclists described as adult commuters declined by nearly 60 per cent between March and July 1990. This figure is invalid because of the different times of the year involved (the decline is probably attributed to the usual reduction of cycling in winter months), although the July survey was taken in fine sunny weather.

3) Morgan and others (1991), in surveys in March 1990 and March 1991, showed declines of 30 per cent in recreational cycling and 32 per cent in commuter cycling in Victoria.

4) Surveys in Melbourne by Monash University Accident Research Centre (MUARC) showed total bicycle use by children had decreased by 36 per cent. Finch and others provide data showing the following decreases in numbers of bicyclists observed during the first year of the law: adults 29 per cent, teenagers 46 per cent and children 24 per cent.

5) A baseline survey by Walker for the RTA of NSW showed an average post-law decline for cyclists under 16 of 39 per cent (see above).

6) Surveys by Walker for the RTA of NSW were inconclusive for adult cyclists. A decline was shown since April 1991, but this was post-law.

7) In 1990 and 1991, branches of the Royal Automobile Club of Queensland conducted surveys, which showed a reduction of 22 per cent for schools in total, but because of changes in survey conditions the decline was probably more in the order of 30 to 50 per cent. Further, this decline occurred before the law was enforced.

8) In their survey, Healy and Maisey (1992) commented that the numbers of children cycling to primary schools and numbers of recreational cyclists (in WA) declined from 1991 to February 1992.

9) Heathcote (1993) presents limited data which show some decline in numbers of WA children cycling to school. Heathcote’s limited observations of “commuter” cyclists indicate an increase in numbers after the helmet law, but his observations of cyclists classed as recreational show a decline of over 50 per cent. Data from automatic counter surveys conducted by Main Roads showed a decline of 38 per cent from October-December 1991 to October-December 1992.

10) WA Main Roads also counted numbers of cyclists crossing the Narrows and Causeway bridges on weekdays, which show sharp declines in cycling.

11) Surveys by the Road Safety Council of the Northern Territory showed there was little change pre-law to post-law in the numbers of children cycling to primary school, but a 36 per cent decline in cycling to high school. The decline in numbers of “commuter” cyclists was of the order of 50 per cent.

12) Members of the Cyclists’ Rights Action Group carried out a survey of 325 cyclists in the ACT in May 1992, pre-law, and found that 28 per cent (or 90 respondents) would cycle less if helmets were compulsory.

13) Ratcliffe (1993) reported that mean weekday cycle path daily volumes in the ACT were recorded in 1992 to be about one third lower than the similar period in 1991, with mean weekend daily volumes declining by about half.

14) ACTUS followed up with another survey in 1993/94 which found a 34 per cent increase from 1992, almost back to pre-law figures. However, the 1993/94 surveys were conducted mainly in February, whereas the 1992 surveys were in December. Comparisons of those few sites with figures available for the same months, show a total count of 7763 for 1992/93 versus 7810 for 1993/94, an increase of 0.6 per cent.


4. Helmet Wearing Rates

Tables 8 through 13 of SAORS 8/94 are all self reported. If asked after the law if they wore a helmet, how many people would have lied, not wanting to admit to a lawbreaking activity, and said “yes” when the answer is in fact “no”, or even “yes (but only when I think I can’t get away with not wearing one)”. In any case it is only an indication of helmet wearing, and nothing to do with helmet law acceptance.


5. Hospital Admission Data

A number of points arise from the hospital admission data, and subsequent analysis of the effect of the helmets law.

5.1. Hospital Admissions for Under 15’s

The number of admissions for under 15’s was much the same in the first year of the law as for the first three pre-law years of the data. This is in spite of increased helmet wearing rates and reduction in number of cyclists. The number of admissions in the second year of the law actually increased. So with fewer cyclists wearing more helmets, hospital admissions were the same or more. Helmet laws were largely meant to protect the children, yet it appears that they have done children more harm than good.

5.2. Hospital Admissions for Over 15’s

The number of admissions for over 15’s showed a solid decrease after the law. This is inconclusive however in light of the absence of an accurate measure of the decline in cyclists. It is also established that older children and adults are more likely to have accidents involving motor vehicles than are young children (Hillman, 1993) so the fact that hospital admissions for over 15’s declined but under 15’s did not is likely to be related to improved traffic conditions and less motor vehicle involvement.

5.3. Improved Traffic Conditions

There is no account taken by the authors of the effect of improved traffic conditions, as indicated in Figure 19 of their report by the general decreasing trend of all road crash casualties. It is noted on page 31 that casualties remained high until around June 1991 at which point they showed a substantial decrease. This was at the same time that the helmets law was introduced. The authors rightly suggest that the decrease was possibly due to a combination of factors, including speed cameras and 0.05 BAC limit. This may be coincidental, but the requirement for compulsory bicycle helmets and the 0.05 BAC limit were both part of the Federal Government’s 10-point black spots road funding package in 1989.

Commenting on the decline as shown in Figure 19 of their report, the authors say on page 31 that “It would appear from this that the reduction in number of bicycle casualties admitted to hospital may not be attributed to any indirect effect of helmet legislation”. This statement is rather tentative and open to misinterpretation, but it seems they are claiming that the reduction in all bicycle casualties (not just head injuries) might have nothing to do with any reduction in cycling, i.e. that cycling did not in fact decline at all and the real reason there were fewer (non-head) injuries was because of the safer roads!

5.4. Involvement of Motor Vehicles

From Table 21 (Bicycle Accidents Resulting in Hospital Admission Involving A Motor Vehicle) the authors note that the majority (75-80%) of accidents resulting in hospital admissions do not involve a motor vehicle. This is correct, but, as noted by Hillman (1993): “The great majority of accidents are minor. They characteristically involve cyclists losing control of their cycles and falling off. Other vehicles are not involved. Injuries are rarely serious; admission to hospital usually reveals only short-term concussion. But when accidents are serious, they generally involve damage to the head following collision with a motor vehicle. This is true for the large majority of fatalities and about one half of the serious injuries. Adult cyclists are most frequently involved.” In Australia in 1988, a moving motor vehicle was involved in 92 per cent of fatalities to cyclists.

The SAORS 8/94 authors noted the decreasing trend of percentages for motor vehicle involvement in Table 21, but failed to realise that this is likely to be a direct result of the roads being made safer for cyclists. As a result of less motor vehicle involvement, it can be expected that the percentage of non-head injuries will increase in proportion to injuries involving the head. In South Australia, North et al. (1993) noted “We have recently observed an apparent fall in the number of patients suffering from head injury due to road trauma …. The largest drop in patient numbers was observed in motor cyclists, falling from an average of 24 per year previously, to only five in 1992.” This is unlikely to be related to helmet wearing since compulsory helmets for motor cyclists has been in effect for two decades. It appears to be well established that there was a decreasing trend in head injuries for all road users in South Australia, not just cyclists. To determine this effect on cyclists, a comparison between cyclists and pedestrians would be appropriate.

For Victoria, Robinson (1996) found that the percentage of head injuries in claims to the Motor Accidents Board for pedestrians and cyclists aged 0-16 from 1980-85 shows a correlation of 0.94, statistically significant with P < 0.02. Major initiatives directed at drink-driving and speeding were introduced in Victoria in December 1989 and March 1990 (Cameron et al. 1994), and pedestrian fatalities fell by 42 per cent from 159 in 1989 to 92 the following year. It is likely these initiatives also reduced impact speeds and hence head accelerations and the proportion of victims with head injuries. It would seem that any reduction in head injuries would have had more to do with RBT and anti-speeding campaigns than with the use of helmets.

As Robinson (1996) pointed out, “the cause of any common trends in percentage head injured for pedestrians and cyclists may relate to impact speed of motor vehicles”. Janssen and Wismans (1985) observed a 40 per cent reduction in maximum head acceleration of dummy pedestrians hit by vehicle fronts, compared with reductions of 30%, 22% and 10% for chest, pelvis and feet, when vehicle impact speed was reduced from 40 to 30 kph. The effect for dummies on bicycles was similar. Maximum head acceleration reduced by 50 per cent, compared with 30%, 16% and 36% for chest, pelvis and feet.

It is well established that a reduction in motor vehicle involvement and/or speed will reduce the incidence of head injuries significantly more than non-head injuries.

As mentioned earlier, Table 21 shows that about 80 per cent of cycling accidents resulting in hospitalisation do not involve a motor vehicle and further that motor vehicle involvement had declined. However, it is also well documented that over 90 per cent of serious head injuries to cyclists do involve a motor vehicle (Hillman, 1993). Therefore, even without helmets, we can reasonably expect the number of serious head injuries to decrease in proportion to other injuries for cyclists. In fact, from a mere 2 percentage-point change in motor vehicle involvement (say from 20% to 18%) we could expect about a 10 per cent reduction in serious head injuries compared to other injuries! It should also be pointed out that, in addition to a lower frequency of motor vehicle involvement, the average speed of the motor vehicle in those accidents might also have been reduced thanks to speed cameras and other measures which were in force, therefore further contributing to the reduction in head injuries.

From Table 21 of SAORS 8/94, motor vehicle involvement declined from 21.3 per cent in 1989/90 to 18.9 per cent in 1992/93, or by 11.3 per cent (2.4 percentage points) over the same period as the two year before/after period used to obtain the 24.7 per cent reduction in PPI (Potentially Preventable Injuries, ie injuries which a helmet might have prevented – see page 30 of SAORS 8/94). For the one year before/after period, with only a 12.1 per cent reduction in PPI (see page 29), the decline in motor vehicle involvement was from 19.7 per cent to 18.3 per cent, or by 7.1 per cent (1.4 percentage points). These figures of 24.7 versus 2.4, and 12.1 versus 1.4, are roughly proportional and provide an alternative explanation for the reduction in head injuries than simply the use of helmets.

The authors of SAORS 8/94 did not consider any of the above when they calculated their figures of a 12.1 per cent and 24.7 per cent reduction in potentially preventable head injuries, which they attributed entirely to helmets. They also failed to explain why there was such a great disparity between the one- and two-year figures, one of which was twice as large as the other! It is unlikely that the efficacy of helmets would have changed by so much in the space of just one or two years.

5.5. Cyclist Risk Taking

Another possible explanation for the data is that cyclists may be taking more risks now that they are wearing helmets. Risk compensation is fairly well documented. Hillman (1993) cites research on risk compensation and notes that “discussion of this subject of behavioural adaptation no longer centres on whether it occurs but on how complete it is”. By comparing head with non-head injuries and attributing the difference to the benefits of helmet wearing, the SAORS 8/94 authors have ignored the possibility that cyclists may be taking more risks and therefore having more accidents and/or more severe accidents. The net effect of this may be more non-head injuries with head injuries remaining the same due to the increased risk taking cancelling out the (limited) benefit of bicycle helmets. This is clearly not a beneficial or desirable outcome of the helmets legislation.

There is certainly no shortage of data to support the hypothesis that cyclists are taking more risks due to helmet wearing. Here are a few examples :

1) Rodgers (1988) studied over 8 million cases of injury and death to cyclists over 15 years in the USA. He concluded as follows: “There is no evidence that hard shell helmets have reduced the head injury and fatality rates. The most surprising finding is that the bicycle- related fatality rate is positively and significantly correlated with increased helmet use.”

2) The South Australian under 15 hospital admissions data showed no decline and even an increase in head injuries, in spite of any declines in cyclist numbers.

3) As previously stated, non-head injuries to children in NSW declined by substantially less than the decline in number of cyclists. This result happened despite declines in injuries to pedestrians and motorists: an indication of safer roads.

5.6. No Tests of Significance

There were no tests of significance done on the important data in Tables 24 and 25, from which conclusions of helmet effect were drawn. This would be unacceptable for any respectable scientific journal.

5.7. Classification of Injuries

The injuries listed in Appendix 1 as being potentially preventable by a helmet are biased. How could a helmet protect nasal bones, upper facial bones, eye, eyeball, nose and forehead? Research commissioned by the Federal Office of Road Safety recommended that the standard for bicycle helmets, AS2063, should be amended to extend protection to the temporal area, but it was not done in 1990, when other amendments to the standard were made. Another study (Acton, 1996) found that bicycle helmets were not preventing facial injuries in children.

It should also be pointed out that many of the injuries listed as being preventable by helmets are of a superficial nature (e.g. “open wound of scalp, nose”) and that helmet wearing is likely to result in an increase in the more serious diffuse brain injury (National Health and Medical Research Council, 1994).


6. Conclusions

1) There are no data from South Australia which adequately measures the true change in number of cyclists. Proper studies should have been set up but were not. It is no longer possible to determine with any certainty the effect legislation has had on the number of cyclists in South Australia.

2) High helmet wearing rates are seen as evidence of the effectiveness of the law, which seems to imply that the purpose of the law is simply to force cyclists to wear helmets at all costs, as opposed to saving lives and reducing injury.

3) When placed under scrutiny, the conclusions reached that the helmets law has reduced head injuries by 12.1 per cent to 24.7 per cent are without proper foundation. Further, these figures were derived without proper statistical tests of significance. It is not even established that rates of head injury to those still cycling after the helmets law declined; indeed, interstate experience indicates that the reverse is more likely. In any case, reduced head injury rates are more likely to be a result of improved road conditions due to factors including anti- speeding and RBT measures, than due to helmets.

4) Bicycle helmet legislation should be repealed in South Australia and elsewhere. There has been much harm done (loss of cycling benefits, infringement of civil liberties) for little or no gain. It is about time Governments were honest and admitted that the helmets legislation has been a failure. Recommending that legislation be continued whilst having (at best) flimsy evidence of its effectiveness is a case of reverse-onus – it is the Government that should have conclusive proof to support legislation.

5) The South Australian Office of Road Safety Report 8/94 is very limited in its value for the purposes of evaluating the effect of compulsory bicycle helmet legislation. Its conclusions were evidently motivated by the political desire to justify the current compulsory helmets policy of the Government.

6) The Dorsch study has been disregarded by most researchers.


7. Acknowledgements

Special thanks to:
D.L. Robinson, UNE
The South Australian Office of Road Safety


8. References

ACT Bicycle Volumes; Trends, Variations, Survey Results, Helmet Wearing And Cyclist’s Characteristics, 1991 – 1993/94; Report prepared by the Traffic Monitoring Unit, ACT City Services, Department of Urban Services, PO Box 158 Canberra ACT 2601, Australia.

Acton, Caroline H C, Nixon, James W, Clark, Ronald C ; Bicycle riding and oral/ maxillofacial trauma in young children, MJA 1996; 165: 249.

Cameron, M.;Vulcan, A.P.; Finch, C.F.; Newstead, S.V. Mandatory bicycle helmet use following a decade of helmet promotion in Victoria, Australia – an evaluation. Accident Analysis and Prevention, Vol 26, No 3, 1994a.

Dorsch, M.M., Wodward, A.J. and Somers, R.L., Do bicycle helmets reduce severity of head injury in real crashes?, Acc. Anal. & Prev. 19, 3, pp. 183-190, 1987

Finch, C.F., Heiman, L. and Neiger, D., Bicycle use and helmet wearing rates in Melbourne, 1987 to 1992: the influence of the helmet wearing law, Monash University Accident Research Centre report no. 45, February 1993

Harrison, R., Observational Study of Bicycle Helmet Wearing Amongst South Australian Schoolchildren, for the Office of Road Safety, Department of Transport, South Australia, April 1994.

Healy, M. and Maisey, G., The impact of helmet wearing legislation and promotion on bicyclists in Western Australia, Traffic Board of Western Australia, Perth, 1992

Heathcote, B., Bicyclist helmet wearing in Western Australia: a 1993 review, Traffic Board of Western Australia, Perth, 1993

Hillman, M., Cycle helmets, the case for and against, Blackmore Press, Longmead, Shaftesbury, Dorset, 1993

Janssen, E.G.; Wismans, J.S.H.M. Experimental and mathematical simulation of pedestrian-vehicle and cyclist-vehicle accidents. Proceedings of the 10th International Technical Conference on Experimental Safety Vehicles, Oxford, July 1985.

Marshall, J.; White, M.; Evaluation of the Compulsory Helmet Wearing Legislation for Bicyclists in South Australia, South Australian Department of Transport, Office of Road Safety Report Series 8/94, November 1994.

North, B.; Oatey, P.; Jones, N.; Simpson, D.; McLean, J.; Head injuries from road accidents – a diminishing problem? Medical Journal of Australia, 158:433; 1993

Ratcliffe, P., Bicycling in the ACT – a survey of bicycle riding and helmet wearing in 1992, ACT Department of Urban Services, Canberra, 1993.

Road Safety Council of the Northern Territory, Bicycle helmet wearing in the Northern Territory, GPO Box 1176, Darwin, 1992

Road Safety Council of the Northern Territory, 1993 bicycle helmet survey report, GPO Box 1176, Darwin, 1993

Robinson, D.L.; Head Injuries and Bicycle Helmet Laws, Accident Analysis and Prevention, volume 28, number 4, pages 463-75 (1996).

Rodgers, G.B., Reducing bicycle accidents: a reevaluation of the impacts of the CPSC bicycle standard and helmet use, Journal of Products Liability, 11, pp. 307-317, 1988

Smith, N.C. and Milthorpe, F.W., An observational survey of law compliance and helmet wearing by bicyclists in New South Wales – 1993, for the New South Wales Roads and Traffic Authority, Sydney, 1993

Thompson, R.S., Rivara, F.P. and Thompson, D.C., A case-control study of the effectiveness of bicycle safety helmets, The New England Journal of Medicine, 320: 21, 1989

Vic Roads, Initial Effects of Mandatory Bicycle Helmet Wearing Legislation”, July 1990, report IR 90-15, Melbourne, 1990

Walker, M.B., Law compliance and helmet use among cyclists in New South Wales, April 1991, for the New South Wales Roads and Traffic Authority, Road Safety Bureau consultant report CR 1/91 Sydney, 1991

Walker, M.B., Law compliance among cyclists in New South Wales, April 1992, a third survey, for the New South Wales Roads and Traffic Authority, Network Efficiency Branch, Sydney, 1991

Wikman, J. and Sims, C., Bicycle helmet wearing survey 1990, Royal Automobile Club of Queensland, Brisbane

Wikman, J. and Sims, C., Bicycle helmet wearing survey 1991, Royal Automobile Club of Queensland, Brisbane

What do you think of this post?
  • Boring (0)
  • Useful (0)
  • Interesting (0)
  • Insightful (0)

Change in Casualties to Cyclists Following The Helmets Law

Written in 1994

Introduction

The Federal Government took action in 1989 to make Australia the first country in the world to compel cyclists to wear helmets, but had little knowledge of the likely effects of its action. As the Government of Victoria told the Federal Parliamentary Committee that recommended compulsory helmets, “the incidence of bicycle helmet use has not yet reached a sufficiently high level anywhere in the world for a scientific examination of helmet effectiveness in injury reduction to be undertaken.” (1) Compulsory helmets therefore is an experiment with the safety of cyclists.

To be responsible, the Federal Government should at least have set up a system to monitor the effects of the helmet laws that resulted from its action. This would include measuring numbers of cyclists and casualties, in particular head injuries, pre-law and post-law. It did not, nor did any of the states or territories. The experiment is therefore uncontrolled.

Some states and territories have, however, made surveys to measure the effect of the helmet laws on helmet wearing. Incidental to this purpose, some of these surveys have measured changes in numbers of cyclists pre-law to post-law, with more or less accuracy, and in some places automatic counters have provided similar information. Wherever such surveys have been done, they have shown sharp declines in numbers of cyclists.

Established systems provide information on casualties to cyclists in the states and territories, but this information is not always in a form useful for making pre-law and post-law comparisons. Nor may it always be readily correlated with information on changes in numbers.

As the most reliable information from surveys is from New South Wales, the following analysis is for that state. It is expected that the conclusions would hold for the other states and territories.

Change in numbers of cyclists and casualties in NSW

After the helmets law was introduced in NSW in 1991, on 1 January for cyclists 16 and over and on 1 July for children under 16, the numbers killed in road traffic accidents declined: from 20 in 1990, to 10 in 1991 and 6 in 1992 (1). Government ministers claimed this as a measure of benefit of the law. The claim is here shown to be spurious.

With such small numbers, chance variations can be important; the respective numbers for 1993 and 1994 were 8 and 23. Also, account needs to be taken of the change in traffic conditions due to random breath testing etc and the post-law decline in the number of cyclists.

The effect of chance is small if casualties are measured as totals killed and seriously injured (admitted to hospital). For children aged 0-16, the group having the highest casualties as cyclists, these statistics from the Roads and Traffic Authority (RTA) (2) are as shown in Table 1.

TABLE 1

CHILDREN AGED 0-16 KILLED AND SERIOUSLY INJURED, NSW

Year Cyclists Pedestrians All road users

1989        175           380           1206
1990        152           354           1035
1991        115           315            877
1992         97           316            836
1993        103           281            829

The table is confined to ages 0-16, as there are no reliable data on the post-law decline in numbers of older cyclists.

To reduce chance variations, and being generous to ministers, we use the total of 1989+1990 as a measure of casualties pre-law, and 1992+1993 as post-law. On this basis, casualties declined from 327 pre-law to 200 post-law, or by 39 per cent.

How much of the decline can be explained by factors other than helmet wearing? First, improved traffic conditions due to such factors as random breath testing reduced casualties to all child road users by 25 per cent, as shown in Table 1, but, generous again, let us say it explains only the same decline in casualties to cyclists as to pedestrians, 19 per cent.

Second, the number of cyclists declined post-law. The RTA measured this decline for cyclists of estimated age under 16. A baseline survey in April 1991, pre-law for under 16s, counted cyclists passing chosen sites (3). In April 1992 and 1993, the RTA did similar surveys at the same sites (4,5). The number estimated to be under 16 declined from 6270 in 1991 to 3887 in 1992 and 3478 in 1993 – i.e. by 41 per cent on average. For 16 year-old cyclists, the helmets law came into effect on 1 January 1991, so that a decline in their numbers in response to the helmets law would have occurred before the April 1991 survey. It is here estimated as 41 per cent, the same as the under 16s, though it might well have been greater, teenage cyclists being the most averse to wearing helmets.

Combining the 19 and 41 per cent declines would explain a 48 per cent decline in casualties to 0-16 year-old cyclists, from 327 pre-law to 156 post-law. The actual number post-law was 200. Even based on the 41 per cent decline in number of cyclists alone, ignoring the effect of improved traffic conditions, 193 casualties would be expected, still below the actual number. Therefore, there is no evidence that the helmets law contributed to the decline in casualties, except by discouraging cycling. The remaining cyclists actually suffered more casualties in proportion to their numbers.

One possible explanation for the increased rate of casualty is that helmeted cyclists feel protected and therefore ride less carefully than before. Elliott and Shanahan Research, in a 1986 study of young people’s attitudes to helmet wearing (6), found that they “believe that approved helmets would save their heads and lives in the event of a serious accident (with a bus or truck).” Such a belief is likely to have been reinforced by propaganda promoting helmet laws.

A second explanation could be that motorists seeing fewer cyclists on the roads give less thought to them.

Third, the mass of a helmet increases forces on the head when a cyclist encounters bumps, and may result in loss of balance.

Numbers for head injury are not published, but in a pamphlet entitled “The current state of bicycle riding”, June 1994, the Road Traffic Authority of NSW claimed that “NSW data show a strong relationship between reductions in head injury rates and increasing helmet wearing rates”, and “a substantially larger decrease in bicycle head injuries than other types of injuries”. Upon request, the RTA provided the numbers, which they had obtained from the Department of Health, as follows.

TABLE 2

HOSPITAL SEPARATIONS FOR NSW BICYCLISTS 1988/89-1992/93

 Year <16 head >16 head <16 other >16 other

1988/89        414        238        908        497
1989/90        453        274       1053        642
1990/91        384        209        926        540
1991/92        272        176        815        508
1992/93        273        170        893        584

From 384 in 1990/91, the latest pre-law year, the number of head injuries to cyclists less than 16 years old declined to 272 in 1991/92, or by 29 per cent, which is less than the decline in the number of cyclists – 38 per cent. This means that the risk of head injury for the remaining cyclists increased following the law. Even comparing the two years before the helmets law, 1989/90 plus 1990/91, thereby including the highest pre-law number, with the two post-law years 1991/92 plus 1992/93, the decline in head injuries, 35 per cent, is stll less than the 41 per cent decline in numbers of cyclists and compares with the 48 per cent decline that could be expected if the improved traffic conditions were also taken into account. The RTA’s point that head injuries declined more than other types of injuries is of little comfort here.

It should be noted that the numbers from NSW Health in Table 2 are much higher than those in Table 1 from the RTA of NSW. NSW Health has advised that one reason for the difference is that their statistics include patients who may not have been insured or have been involved in an accident serious enough to warrant the attendance of the police. They also confirmed that it was “highly likely” that their statistics include most of the RTA’s category “Other injured”, who suffered less severe injuries than the “Seriously injured”. Consequently, many of the head injuries included in Table 2 would have been of a superficial kind.

Conclusion

Total injuries and head injuries to cyclists under 16 in New South Wales declined following the introduction of the compulsory helmet- wearing law. But the law had the important effect of discouraging cycling.

Pre-law to post-law, both total injuries and head injuries declined less in proportion than the decline in the number of cyclists. Even without allowing for improved traffic conditions, for the remaining cyclists the risk of injury including head injury therefore increased.

References

1. Submission by the Government of Victoria to the House of Representatives Standing Committee on Transport Safety: motorcycle and bicycle helmet safety inquiry, 1985

2. Roads and Traffic Authority of NSW, Road Traffic Accidents in NSW Statistical Statement, annual, 1989-1993

3. Walker, M.B., Consultant report CR 1/91 for Roads and Traffic Authority of NSW, Road Safety Bureau, Law compliance and helmet use among cyclists in New South Wales, April 1991, Sydney, July 1991

4. Walker, M.B., Law compliance among cyclists in New south Wales, April 1992, A third survey, published by Roads and Traffic Authority of NSW, Network Efficiency Branch, Sydney, July 1992

5. Smith, N.C. and Milthorpe, F.W., An observational survey of law compliance and helmet wearing by bicyclists in New South Wales – 1993, published by Roads and Traffic Authority of NSW, Transport and Network Development Branch, Sydney, September 1993.

6. Elliott and Shanahan Research, An exploratory study of high school students’ reactions to bicycle helmets, The Road Traffic Authority of Victoria, Melbourne, April 1986.

What do you think of this post?
  • Boring (0)
  • Useful (0)
  • Interesting (0)
  • Insightful (0)

Reduction in Cyclists in the A.C.T.

written in 1994

Ratcliffe (1993) reported that mean weekday cycle path daily volumes in the ACT were recorded in (December) 1992 to be about one third lower than the similar period in (November) 1991, with mean weekend daily volumes declining by about half. This was after compulsory helmet legislation was introduced in July 1992, compelling cyclists of all ages to wear a helmet whilst riding a bicycle in any public place.

In 1993/94 the counts were done mainly in February. The Government has claimed from these 1993/94 counts that cycling has increased back to almost pre-law levels. A ministerial brief (obtained by the Cyclists’ Rights Action Group through a Freedom of Information (FOI) request) advised the Minister for Urban Services Mr Tony De Domenico that commuter cycling had increased by 34% since 1992 (almost back to pre- law figures). This advice is wrong.

Cycling is, obviously, a highly seasonal activity. February, being one of the hottest times of the year in a cold Canberra climate, is one of the most popular months for cycling and is significantly more popular than either November or December, as shown in the following table taken from the ACT Bicycle Volumes:

Month     B16:  Between Albert Street and    B55: Between Flynn Place and
          Commonwealth Ave Bridge, Parkes    Kaye Street, Parkes
          Weekday  Weekend  Weekly           Weekday  Weekend  Weekly
Jul-93     0.59     ****     0.65             0.89     0.82     0.89
Aug-93     0.59     0.40     0.52             0.98     0.97     0.97
Sep-93     0.71     0.63     0.68             1.07     1.33     1.14
Oct-93     1.30     1.18     1.35             0.87     1.03     0.91
Nov-93     1.43     1.09     1.46             0.51     0.49     0.50
Dec-93     ****     ****     ****             0.87     0.83     0.86
Jan-94     0.49     0.68     0.49             1.50     1.34     1.45
Feb-94     1.60     1.52     1.68             1.31     1.20     1.30
Mar-94     1.76     1.71     1.56             ****     ****     ****
Apr-94     0.86     1.08     0.93             ****     ****     ****
May-94     0.67     0.72     0.69             ****     ****     ****
Average
 Volume     655      476      594              426      374      412

         **** counts not available

It is obvious that comparisons between figures for different times of the year are not valid. However, there were four sites counted in December 1993, rather than January or February 1994. These can be compared with the post-law December 1992 counts and fail to show any significant overall increase:

Weekly counts

Site Between            Nov 91 (pre law)   Dec 92 (post law)   Dec 93
Challis St/Cowper St     3153               1829                1351
Adelaide Ave/Caruthers   1852               1485                1724
Luxton/M'Dermott         2977               1549                1716
AIS/Dryandra St          3521               2900                3019
Total                   11503               7763                7810

Comparisons of those few sites with figures available for the same months, show a total count of 7763 for 1992/93 versus 7810 for 1993/94. This is an increase of only 0.6%, and is still 32% less than the pre-law figures.

The ministerial brief also mentioned a helmet wearing rate of 90%. This figure is based on data from early 1994. However, anecdotal evidence sugggests that the helmet wearing rate may have recently dropped to as low as 50%. Perhaps another study should be conducted on this, and any future surveys on numbers of cyclists should also take into account helmet wearing rates, since any increase in cyclists may well be purely the result of lax law enforcement. It is also possible that the activities of anti-helmet law advocates may be undermining public faith in helmets as the solution to bicycle safety, leading to more cyclists but lower helmet wearing rates.

Conclusion

There is no evidence to support the claim that cycling has increased back to pre-law levels after the initial decline.

Acknowledgements

W.J. (Bill) Curnow
D.L. Robinson (UNE)

Reference

ACT Bicycle Volumes; Trends, Variations, Survey Results, Helmet Wearing And Cyclist’s Characteristics, 1991 – 1993/94; Report prepared by the Traffic Monitoring Unit, ACT City Services, Department of Urban Services, PO Box 158 Canberra ACT 2601, Australia.

Ratcliffe, P., Bicycling in the ACT – a survey of bicycle riding and helmet wearing in 1992, ACT Department of Urban Services, Canberra, 1993.

What do you think of this post?
  • Boring (0)
  • Useful (0)
  • Interesting (0)
  • Insightful (0)